Stephanie Fissel
Jun 3, 2021 ¢« 5 minread

Databases: Discussing Popular
Architectures

Dol oA LR ks A [fid A 1.-;'-_. |ﬂ]!li.i i ‘l A IillH’ EL Il I

T 0 -
O A L T P T | I IIIHLﬂ'ﬂT
L) MT MALT B Ve By i T

AN R W

[T "'_' " leﬁl“ l"::.i

By Hayden French, Katlyn Walter, Silas Hayes, Stephanie Fissel

After a week of designing a set of our own data, populating them into three different
database architectures (Neo4j, MongoDB, and MySQL), and writing python scripts to
query each of them, we have developed a better understanding of what databases
really are and how to manipulate our data to fit each respective architecture.
Databases are crucial to any company or organization, which is why we wanted to
share the insights we have gained.

To start, a database is a collection of organized data. Assuming the database is well-
maintained, it can be extremely useful for storing a large amount of data while
keeping it easy to manipulate. Another advantage of databases is that they can exist
on remote servers meaning that they can be very large while still accessible by
multiple people. Finally, databases can require credentials, meaning sensitive data

(e.g., your passwords and other personal information) is protected.

Database Categories

There are multiple options when it comes to database models, all of which have
different logical structures for data storage. Some of the most popular database
models include the relational model, the document model, and the graph model.

A relational model, such as MySQL, stores data in multiple tables with observations
connected to each other by keys. Each table contains related data on the subject. For
example, in the diagram below the extracurriculars table includes the name, which
semester the extracurricular is active for, the director of it, and whether it requires an
application. The extracurriculars table then connects through a key to the students
table, which contains information concerning which extracurriculars each student
participates in. These are the data we will be working with for the other two databases

as well; however, each will interact with the data in different ways.

classes
| PK | class_id | STRING(256) 1o
class_name STRING(256)
professor_fname | STRING(256)
professor_Iname | STRING(256)

FK | preregs_1 STRING(256) i
FK | preregs_2 STRING(256) +——
credits INT64
gpa FLOATB4
students - -
PK | student_id STRING(256) extracurriculars
first_name STRING(256) [7H PK | xtra_id | INT64
last_name STRING(256) [name STRING(256)
FK | fav_class STRING(256) (' semester | STRING(256)
FK | xtra_id_1 INT&4 Ly director STRING(256)
FK | xtra_id_2 INT64 ly | application BOOL
FK | xtra_id_3 INT64 L4
country
FK | fav_vacation_id STRING(256) H—
—# PK | country_id STRING(256)
FK | dream_vacation_id | STRING(256) |+ | |
l I name STRING(256)
capital STRING(256)
population INTG4

| gdp_per_capita | INT64
timezone STRING(256)

Document models, like MongoDB, store each data item separately from each other.
These data items (documents) are not related to each other as they are in the
relational database and can have multiple different properties within them.

_id: objectId("aeb7?fee2Cc364373852148563")
student_id: "hmfakx"
first_name: "Hayden"”
last_name: "French'

~fav_class: object

class_name: "Theory of Computation"
professor_fname: "NMathan”
professor_lname: "Brunelle”
« preregs: Array
a: "Cs2182"
1: "Csz118"
credits: 3
gpa: 3.1%9
« xtra_id: Array
« @: 0bject
name: "Cavalier Marching Band"
semester: "fall'
director_fname: "andrew"
director_lname: "kKoch®
application: true
« 1: 0bject
name: "Forge"
semester: "both'
director_fname: "andy"
director_lname: "Page”
application: true

« fav_wacation_id: Object

name: "Costa Rica’
capital: "san Jozé'
population: S125448
gdp_per_capita: 12224
timezone: "GMT-&

« dream_vacation_id: object

name: "F1ji"
capital: "suva"
population: 982341
gdp_per_capita: 6176
timezone: "GMT+12

o
[E8)

A good analogy for a document database is a library. Documents (books) are given
unique ids (Dewey Decimal call numbers) and each document can contain a variety of
information (pages). For our data, this looks like having one document for each
student. Inside that document is nested information that contains data on all of the
classes, extracurriculars, and travel countries relating to that student. For instance,
within the extracurriculars section will be the info on semesters, director, and
application.

A graph model, like Neo4;, takes the rows from our tables and makes each one into a
node, colored by which table it belongs to and stores the information of the row.
Those nodes can then be connected to others through named relationships, which can
sometimes have properties depending on the graph model. This model can be
exceptionally useful when modeling something like a social network, as it is easy to
see who interacts with whom and what shared interests connect users.

// R EI%"‘H. - _: (IQ\ -
Y ~_ / \\
U N\,

Editing for Each Database

For MySQL, we didn’t have to edit our data at all. This is because we entered our data
with a relational database in mind, and MySQL is highly integrated with pandas.

For Neo4j, we were able to add some more details to our data. This is because, as a
graph database, Neo4j allows us to structure the data as nodes and the relationships

between them. More specifically, we were able to include additional information

about the relationships between nodes. For example, we have a Hayden node and a
marching band node. With Neo4j, we can add extra data to that relationship, like
Hayden has participated in the marching band for 2 years. With our relational
database, it wouldn’t make sense to include that information under the
extracurricular table since it is not an inherent property of the marching band
activity. However, it is a property of Hayden’s relationship to the marching band so

we can include that information there.

Finally, for MongoDB we tweaked the structure of the data but not so much the data
itself. This is because Mongo is a document model of database and our data was in a
relational form. All we had to do was to rearrange it, creating a nested form of data
within data where we would have referenced another table in MySQL or node in
Neo4;.

Pros & Cons of Each Database

My

Pros: Highly rigid structure, easy to connect related tables

Cons: Highly rigid structure, can be hard to include new data

. mongoDB.

Pros: Document-based storage allows for more flexibility, easy to scale for large

datasets

Cons: Can’t connect related collections, can be difficult to transfer data to

(depends on the type)

|.c. .
 Pros: Unique visualizations, inclusion of relationships allowed us to include
additional data

« Cons: Graph visualizations can get complicated very quickly, difficult to use for

large datasets, can be difficult to query

Key Terms:

CSV: A file extension that stands for comma separated values. One of the most

popular formats for tabular data.
Database: An organized collection of data.

Relational database: A database structured around the relations between stored items.

A popular example is MySQL.

Document database: A database structured around storing data in JSON-like

documents. A popular example is MongoDB.

Graph database: A database structured around nodes (an entity) and a relationship. A

popular example is Neo4;.

SQL: Stands for Structured Query Language, essentially a standardized language used
for passing queries to some types of databases. (Not to be confused with MySQL,
which is a specific database which utilizes SQL)

Query: A request passed to a database. Usually done to retrieve data, but can be done

to edit or even delete data as well.

Key: An attribute that helps identify a row in a table. Can be primary (a unique
identifier for each row) or foreign (when referred to in the context of another table).

Pandas: A popular data analysis package for python.

